
Biogeosciences Discuss., doi:10.5194/bg-2017-151, 2017 Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

1 Historic carbon burial spike in an Amazon floodplain lake linked to riparian 2 deforestation near Santarem, Brazil 3 Luciana M. Sanders¹, Kathryn Taffs¹, Debra Stokes³, Christian J. Sanders², Alex Enrich-4 Prast^{4,5}, Leonardo Nogueira Amora^{6,7}, Humberto Marotta^{6,7} 5 6 7 8 9 ¹Southern Cross Geoscience, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia. 10 ²National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross 11 University, Coffs Harbour, New South Wales, Australia. 12 ³Marine Ecology Research Centre, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, 13 Australia University, P.O. Box 157, Lismore, NSW 2480, Australia. 14 ⁴Laboratório de Biogeoquímica, Universidade Federal do Rio de Janeiro (UFRJ), Rio d Janeiro (RJ), 15 21941 971, Brazil. 16 ⁵Department of Environmental Change, Linköping University, 581 83, Linköping, Sweden. 17 ⁶Ecosystems and Global Change Laboratory (LEMG-UFF) / International Laboratory of Global Change 18 (LINCGlobal), Biomass and Water Management Research Center (NAB-UFF), Graduated 19 Program in Geosciences (Environmental Geochemistry). Universidade Federal Fluminense 20 (UFF), Av. Edmundo March, s/nº – Zip Code: 24210-310, Niteroi/RJ- Brazil. 21 ⁷Sedimentary and Environmental Processes Laboratory (LAPSA-UFF). Department of Geography. 22 Graduated Program in Geography. Universidade Federal Fluminense (UFF), Av. Gal. Milton 23 Tavares de Souza, s/nº - Zip Code: 24210-346, Niteroi/RJ- Brazil. 24 25 26 27 *Corresponding author. E-mail address; l.sanders.13@student.scu.edu.au 28 29 30 31

Biogeosciences Discuss., doi:10.5194/bg-2017-151, 2017 Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

© Author(s) 2017. CC-BY 3.0 License.

Abstract

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

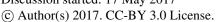
49

50

51

52

53


54

55

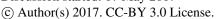
The forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. However, potentially important effects of ongoing deforestation in the watershed on these carbon fluxes is still poorly understood. Here, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and land cover/use. Historical records from 1942 and satellite data from 1975 were used to calculate deforestation rates between 1942 and 1975, and 1975 to 2008 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000-m buffers). Sediment accumulation rates were determined from the ²⁴⁰⁺²³⁹Pu signatures and the excess ²¹⁰Pb method, reaching near 3.8 and 4.2 mm year⁻¹ in the last 60 and 120 years respectively. The average carbon burial rates ranged between 100 and 350 g C m⁻² year⁻¹, with pulses of high carbon burial derived from the forest vegetation, as indicated by δ^{13} C and δ^{15} N signatures, which corresponded to heavy deforestation in the 1940 and 50s. Finally, our results revealed a potentially important spatial dependence of the OC burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100-m buffer) during the period 1942-1975 and the larger open water areas (500, 1000 and 6000-m buffer) during 1975-2008. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation around 1950. Our novel findings suggest the importance of abrupt and temporary events in which some of the biomass released by the deforestation, especially restricted to areas along open water edges, might reach the depositional environments in the floodplain of the Amazon Basin.

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

56

78


1. Introduction

57 Rivers act as vectors, transporting sediment from land to ocean (Abril et al. 2014). 58 Along this trajectory a significant proportion of the sediment load, including organic 59 material, may be deposited in floodplains, creating zones of carbon accumulation (Smith 60 et al. 2002, Dong et al. 2012, Hoffmann et al. 2013). This process is accelerated during flood events, when rivers and tributaries deposit organic material along the inundated 61 62 floodplains (Smith et al. 2002). In some climate zones floodplains are seasonally 63 inundated, with riparian zone vegetation dependent upon this seasonal influx of organic 64 material. The vegetation acts to slow water velocity and trap the fine-grained, carbon rich 65 sediment, within the low-energy environment (Aalto et al. 2003). Therefore, the riparian vegetation along her floodplains may be important for the organic matter deposition and 66 67 the Amazon carbon cycle. 68 The importance of tropical wetland ecosystems in the carbon cycle is well 69 documented (Downing et al. 1993, Melack et al. 2004, Zocatelli et al. 2013, Abril et al. 70 2014, Marotta et al. 2014). It has been shown that wetlands in the warm tropics are some 71 of the most productive biological communities in the world (Neue et al. 1997), 72 representing an important sink for nutrients (Marotta et al. 2009) and carbon (Peixoto et 73 al. 2016), as well as sources of organic substrates to carbon gas production in inland 74 waters (Marotta et al. 2010). However, these wetland ecosystems are also highly 75 threatened by land use activities, especially from deforestation, development of 76 agricultural land and soil degradation (Junk 2013, Lucas et al. 2014). For example, the 77 Amazon Basin wetlands are being degraded by farming activities such as commercial

ranching, and an increase in road density (Goulding 1993).

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

(Skole and Tucker 1993), when an estimated 15% of the pristine rainforest area was lost by the year 2003, increasing to approximately 18% by 2015 (INPE 2016). The ongoing loss of vegetation is responsible for a substantial increase in erosion rates and subsequent sediment inputs into Amazon rivers and lakes (Neill et al. 2013b). Yet these anthropogenic activities are potential sources of allochthonous organic matter that may increase carbon stores in the associated floodplain areas (Diaz and Rosenberg 2008, Stanley et al. 2012). The city of Santarem, in central Amazon, was established in the mid-eighteenth century, approximately 650 km upstream from the Amazon River mouth and at its confluence with the River Tapajós (02°25'0.28"S and 54°42'41.57"W, Figure 1). In 1940, Santarém was only a small village with less than 0.5 km², surrounded by dense pristine rainforest (estimation from the historical mapping of the Santarém City Hall). This city quickly expanded, occupying 5.2 km² by the end of the 1970s and 49.3 km² currently (estimation from satellite images LANDSAT/SRTM). Jupindá Lake is 70 km East of from Santarém City, and receives surface water inflow from small streams draining from the forest and the main tributary Curuá-Una River, a large affluent of the Amazon River (Figure 1). The Lake has been affected by the deforestation associated with the expansion of Santarém City. Between the 1940's and 1950's, there was intense deforestation on the margins of rivers and streams in this area, used to supply the market of wood and forestry products (Amorim 2000, Cruz et al. 2011). In the 1970s, the Curuá-Una River was dammed (Curuá-Una Dam) 45 km upstream of Jupindá Lake to build the first hydroelectric plant of the Amazon Forest (LigockI 2003).

Deforestation of the Amazon Basin accelerated toward the end of the 1970's

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

© Author(s) 2017. CC-BY 3.0 License.

Jupindá Lake provides an ideal opportunity to investigate historical changes in organic carbon burial in a floodplain lake as a result of anthropogenic activities. This will aid identification of still-little known impacts of land cover changes on recent carbon burial rates in depositional environments of the Amazon floodplain.

The objectives of this research are to investigate the affect deforestation and urban development has on carbon burial rates in a tropical floodplain wetland.

2. Methods

A 60 cm depth sediment core (diameter 7.5 cm) was collected in 2010 using a gravity corer in the center of the Jupindá Lake (02°27'43.60" S, 54° 5'1.30" W. The sediment core was sub sampled at 2 cm intervals. Dry bulk density (DBD, g cm⁻³) was determined as the dry sediment weight (g) divided by the initial volume (cm³). A homogenized portion was acidified to remove carbonate material, then dried and ground to powder for organic carbon (OC), nitrogen (N), δ^{13} C, and δ^{15} N analyses using a Flash Elemental Analyzer coupled to a Thermo Fisher Delta V IRMS (isotope ratio mass spectrometer). Analytical precision: C = 0.1 %, N = 0.1%, δ^{13} C = 0.1‰ and δ^{15} N = 0.15 ‰.

Samples were prepared for Pu dating following the method of Ketterer et al. (2004) with modifications to enable larger sample mass to be processed as a result of the likely lower Pu concentrations in the Southern Hemisphere (Sanders et al. 2014). To obtain a larger mass, sediment intervals were joined and homogenized so the sediment intervals for the ²⁴⁰⁺²³⁹Pu dating was 4 cm intervals. Sample aliquots ranging from 14 to

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

© Author(s) 2017. CC-BY 3.0 License.

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

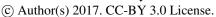
143

144

145

146

147



The leaching was conducted overnight at 80°C with added ²⁴²Pu yield tracer (NIST 4334g, 19 picograms). Acid leaching (as opposed to complete dissolution with HF) is known to solubilize stratospheric fallout Pu, and there is little possibility that "refractory" HNO₃-insoluble Pu exists in the South America (Sanders et al. 2014). The leachates were diluted to 100 mL, filtered to remove solids, and the aqueous solutions were processed with TEVA resin (EIChrom, Lisle, II, USA) in order to chemically isolate 3.0 mL Pu fractions in aqueous ammonium oxalate solution suitable for measurements by sector ICPMS. Pu determinations were performed using a VG Axiom MC operating in the single collector (electron multiplier) mode. The system was used with an APEX HF desolvating micronebulizer system (ESI Scientific, Omaha, NE, USA) with an uptake rate of 0.4 mL/minute. Qualitative mass spectral scans (averages of 50 sweeps over the mass range 237.4 – 242.6) were collected for selected samples prior to the electrostatic sector quantitative scanning of ²³⁸U+, ²³⁹Pu+, ²⁴⁰Pu+, and ²⁴²Pu+. Detection limits were evaluated based upon the analysis of two blanks and considerations regarding the obtained mass spectra. A detection limit of 0.01 Bq/kg of ²³⁹⁺²⁴⁰Pu is applicable for samples of nominal 25 g mass. For ²¹⁰Pb dating, an intrinsic germanium detector coupled to a multi-channel analyzer was used. Freeze dried and ground sediments were packed and sealed in gamma tubes. Lead-210 and ²²⁶Ra activities were calculated by multiplying the counts per minute by a factor that includes the gamma-ray intensity and detector efficiency determined from standard calibrations. Identical geometry was used for all samples. Lead-210 activities were determined by the direct measurement of the 46.5 KeV gamma peak. Radium-226

29 grams were dry-ashed at 600 °C for 16 hours, and leached with 50 mL of 16 M HNO₃.

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

activity was determined via the ²¹⁴Pb daughter at 351.9 KeV. For ²²⁶Ra measurements, the packed samples were set aside for at least 21 days to allow for ²²²Rn to ingrow and establish secular equilibrium between ²²⁶Ra and its granddaughter ²¹⁴Pb. Excess ²¹⁰Pb activity was calculated by subtracting the supported ²¹⁰Pb (i.e., ²²⁶Ra activity) from the total ²¹⁰Pb activity. The sediment accretion rate for the previous 120 years was estimated by two methods derived from ²¹⁰Pb dating, the Constant Initial Concentration (CIC) model assuming that this rate has not varied during the encompassed time span (Appleby and Oldfield 1992), and the Constant Rate of Supply (CRS) model based on a constant influx of unsupported, atmospheric ²¹⁰Pb that allows a variable sediment rate (Ivanovich and Harmon 1992). Organic carbon accumulation rates were estimated from sediment accretion rates (mm yr⁻¹), dry bulk density (g cm⁻³) and OC content. The land/use cover analysis was based on documented historical information before 1975 and satellite images (Landsat/SRTM, Table 1) from 1975, 1985, 1995 and 2008 available from the United States Geological Survey (USGS). No significant deforestation occurred in the catchment area of the Jupindá Lake until early 1940's (Amorim 2000, Cruz et al. 2011). Subsequent land/use changes were determined using satellite images (Gordon 1980, Munyati 2000). All satellite images were from low-water seasons to remove the influence of the flood pulse on the exposed area over years. The resolution of the images was 30 m, except that from the 1970's which was resampled from 90 to 30 m (Table 1). This approach allowed an assessment of changes in land cover which could then be compared to results from carbon accumulation. Results of the spatial assessment were separated into two time periods; 1942-1975, or the timeframe between the onset of land clearing and the first satellite image, and 1975-2008 which provides a more

detailed assessment of temporal changes to the study area. The time period 1942-1975 was

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

© Author(s) 2017. CC-BY 3.0 License.

characterized by a rapid removal (peak until the 1960's) of vegetation established at the margins of inland waters; especially *Aniba rosaeodora* (Pau-rosa) for extraction of oils, and *Mezilaurus itauba* and *Cedrela fissilis* (Louro-itaúba and Cedro, respectively) as hardwoods, and the opening of clearings for crops of textile fibers and subsistence products. Further, intensification of deforestation towards the interior of the forest and following the urban growth of Santarém is reported from the 1970's, along with depleting vegetal resources near to the margins of lakes and running waters in this region was noted (Amorim 2000, Cruz et al. 2011).

In order to address the spatial dependence of recent OC burial in Jupindá Lake for deforestation, we analyzed the land/cover use in four buffer areas around this lake and contributing rivers or streams. The first buffer of 100 m represented the riparian forest protected area by the Brazilian laws for fluvial channels with a width of 50 to 200 m. Other buffers were progressively higher, with a width of 500, 1000 and 6000 m from the riverbank and lake margins (Figure 2). In addition, we considered only stretches of rivers and streams 65-km long from Jupindá Lake to analyze its catchment area of more direct influence. This criteria also allowed to avoid the interference of the artificial flooding on the margins of the Curuá-Una hydroelectric dam, which was built in 1977 (Fearnside 2005).

3. Results

Analyses of ²³⁹⁺²⁴⁰Pu were not detectable from the bottom of the sediment core until the 22-26 cm interval (Figure 43). This radioisotope was detected in the 18-22 cm

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

© Author(s) 2017. CC-BY 3.0 License.

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

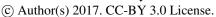
213

214

215

216

217



Bq/kg ²³⁹⁺²⁴⁰Pu) at the 16 cm depth. The ²³⁹⁺²⁴⁰Pu activities appears to spike at the 14 to 18 cm interval, which indicates the 1963 stratospheric fallout peak. It may be said with certainty that the material below 22 cm was deposited pre-bomb (that is, prior to the early 1950's). This affixes an upper limit on the average sedimentation rate of near to 3.8 mm year⁻¹. The Pu atom ratio data indicate that the Pu is originating from stratospheric fallout (plutonium isotopic ratios (240/239Pu) of ~0.18). These results are consistent with the 240 Pu $^{/239}$ Pu of 0.180 ± 0.014 discussed by Kelley et al. (1999). The ²¹⁰Pb and ²²⁶Ra profiles reveal a complex depositional environment with sedimentation variations in the upper intervals with disturbances, such as bio-turbation and resuspension in the upper ~ 20 cm of the sediment column (Figure 4). A decrease in ²¹⁰Pb_{ex} activity was found below the 20 cm depth interval. The ²¹⁰Pb_{ex} data distribution are as follows: y = -0.0749x + 7.5) ($R^2 = 0.73$; n=19; p < 0.01) from the 20 to the 60 cm interval, below the apparent mixed zone. Both estimates of sediment accretion rate during the 120 years from CIC and CRS models were similar, reaching 4.1 and 4.3 mm yr⁻¹ respectively, which were slightly higher than the ~ 60 year $^{239+240}$ Pu dates (3.8 mm yr⁻¹). The dry bulk density (DBD), total organic carbon (OC%), total nitrogen (TN%) content and the carbon and nitrogen (C/N) molar ratios along with the δ^{13} C and δ^{15} N values showed important increases towards the center of the sediment core Table 2. The relationship between δ^{13} C and δ^{15} N indicated different origins of OC in the sediment core (Figure 5) contributing to the significant relationship between recent OC burial and the δ^{13} C (Figure 6). The OC burial rates show an increasing trend from ~ 1930 to 1960 with a peak during

interval (0.029 \pm 0.002 Bq/kg $^{239+240}$ Pu) with the highest concentrations (0.047 \pm 0.004

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

the 1940's and 50's (grey area in Figure 7). The carbon burial rates increased, from 150 g m⁻² year⁻¹ in the time period 1890 - 1940 to ~ 300 g m⁻² year⁻¹ between 1940 and 1950. Carbon accumulation then decreased to approximately 200 g m⁻² year⁻¹ from 1960 to 1980, after which a gradual decline in carbon burial was still measured. In relation to land use/cover in the surroundings of fluvial channels and the Jupindá lake over time, only the smallest buffer (100 m) showed more intense relative changes during the previous period 1942-1975, when the increase in deforested area was around 75 % higher than in the subsequent time period 1975-2008 (Figure 8).

4. Discussion

Overall, similar estimates of sediment accretion using different methodologies (i.e. 60 and 120 year trends from the ²³⁹⁺²⁴⁰Pu and ²¹⁰Pb_(ex) models, respectively) revealed an insight into changes in the sediment accumulation assessed here. This indicates that even though the origin of the organic material was modified, the sediment accumulation has varied little as indicated by the 60- or 120-year sediment accumulation rates. To present the historical profiles of the carbon burial rates, an average is taken between these two methods (4 mm year⁻¹), multiplied by the DBD and carbon content for each interval of the entire sediment core.

The high peak in carbon accumulation observed around 1950 appears to be associated with a shift in the source of organic material, inferred by changes in carbon and nitrogen contents and the isotopic fractioning toward the middle (from 40 to 20 cm depth interval) of the sediment column. This peak for different organic and inorganic variables in intermediate depths revealed changes not only in the amount but also in the

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

© Author(s) 2017. CC-BY 3.0 License.

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

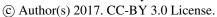
263

type of material being deposited over time. Previous studies have reported two common origins for OC in the Amazon forest. Higher $\delta^{15}N$ and more negative $\delta^{13}C$ values could indicate the presence of Santarém soil organic matter (such as that adjacent to the Jupindá Lake), while lower $\delta^{15}N$ and more variable $\delta^{13}C$ values indicate particulate organic carbon (POC) from the terrestrial vegetation in the catchment (Ometto et al. 2006, Zocatelli et al. 2013). Here, a corresponding increase in OC%, TN% and OC burial rates measured, with a peak near ~1950, suggesting higher inputs of organic matter into lake. The higher $\delta^{13}C$ signature, coupled with a lower $\delta^{15}N$ indicates a greater influence from the terrestrial Amazonian POC during the same period around 1950 (Ometto et al., 2006). When looking for a cause for this change in the source of organic material, we look to the analysis of land use change. Land clearing associated with early occupation from the 1940s in the catchment area of the Jupindá Lake reveals a potential cause of the increased carbon burial observed in this lake. Changes in land use and cover may significantly affect recent OC burial in mid-high-latitude lakes (Anderson et al. 2013, Dietz et al. 2015). Our results suggest that land clearing during the 1940's and 50's might be related to increased organic matter deposition in the region's floodplain lakes. During this period, intense wood extraction and expansion of agricultural settlements occurred (Amorim 2000, Cruz et al. 2011). One important consequence of deforestation in the watershed is the silting up of lakes (Enea et al. 2012), including those at humid lowlatitude areas (Cohen et al. 2005, Bakoariniaina et al. 2006). The riparian forest systems are generally effective in reducing the sediment transport by surface runoff, with the removal of this vegetation increasing the erosion processes especially in the Amazon basin due to intense rainfall (Neill et al. 2013a).

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

© Author(s) 2017. CC-BY 3.0 License.


We also found a spatial dependence of the carbon accumulation in the Lake Jupindá, as the much lower OC burial was coupled to higher deforestation rates in those larger buffers around its margins and main fluvial channels (500, 1000 and 6000 m) in the period after 1975 (1975-2008) than that before (1942-1975). This confirms previous evidences that the recent deforestation process in the region was started in areas around running and lake waters (Amorim 2000, Cruz et al. 2011), and not in the interior of the forest. The enhanced OC burial in lacustrine sediments before 1975 was related to higher deforestation rates only in the riparian vegetation zone (100-m buffers), suggesting a higher influence of deforestation with decreasing distance to water courses. Therefore, the soil carbon enrichment to the aquatic sediments during the peaks of riparian deforestation may cause intense but temporary carbon burial events in the Amazon floodplain, representing a significant part of the total loss of terrestrial organic matter. In contrast, the continued removal of vegetation from the interior of the forest might be not directly related to increases of OC burial, even temporarily, in depositional aquatic ecosystems.

5. Conclusion

The ²³⁹⁺²⁴⁰Pu and ²¹⁰Pb dating methods were combined with a spatial analysis of vegetation clearing to firstly calculate carbon accumulation rates, and then to interpret changes in sediment characteristics during the previous century. The Pu dating method closely approximates measurements from the ²¹⁰Pb chronologies and hence offers mechanism to determine sedimentation rates and carbon accumulation in Amazon sediments. An increase in OC burial, 150 to ~ 300 OC g m⁻² year⁻¹, coincides with

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

287

288

289

290

291

292

293

294

295

296

changes in the δ^{13} C and δ^{15} N signatures, likely influenced by the heavy deforestation in riparian systems of this region during the 1940s and 50's. It is therefore suggested that the net increase in carbon burial towards the center of the sediment core, which represents the highest carbon burial rates during the 1950s, is a result of a change in source of organic matter deposition. The differing carbon burial rates along the sediment core reveals the potential complexity of carbon burial rates in the Amazon floodplain lakes, directly related to the development within the Basin. This work demonstrates a new understanding on spatial dependence of carbon burial capacity of the Amazon floodplain lakes with respect to advances in deforestation in the basin. Acknowledgements

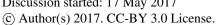
297

298

- 299 LMS is supported by an APA and IPRS scholarships. HM received a research grant from
- 300 the Brazilian Research Council (CNPq - "Programa Universal") and the Research
- Support Foundation of the State of Rio de Janeiro (FAPERJ "Programa Jovem Cientista 301
- 302 do Nosso Estado").

303

304


305

CAPTIONS TO FIGURES

- 306 Figure 1. Floodplain Lake where the sediment core was collect, near the Amazon River
- 307 and the city of Santarém, Brazil. This floodplain lake has a diameter of approximately 3
- 308 km.

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

- 309 Figure 2. Different buffer sizes (100m, 500m, 1km and 6km) along the stretch of the
- 310 Curuá-Una river from Jupindá Lake (red) to the hydroelectric dam upstream (yellow).
- Figure 3. ²³⁹⁺²⁴⁰Pu profile, indicating ~ 1950 when these radionuclides were first 311
- 312 introduced into the atmosphere.
- **Figure 4.** Excess ²¹⁰Pb and ²²⁶Ra profile against depth. 313
- **Figure 5.** δ^{13} C vs δ^{15} N. The Amazon River POM and Santarem soil organic matter 314
- 315 values, adjacent to the study area, are taken from Zocatelli et al (2013).
- 316 **Figure 6.** Carbon burial as a function of δ^{13} C.
- **Figure 7**. δ^{13} C, δ^{15} N and carbon burial rate values in relation to age (year). 317
- 318 Figure 8. Percentage of modified areas in relation to the different buffers.

320

321

319

CAPTION TO TABLES

- 322 Table 1. Satellite acquisition data from United States Geological Survey (USGS) and the
- 323 Curuá-Una River quota from Brazilian Water Agency (ANA).
- Table 2. Depth profiles of dry bulk density (DBD), total organic carbon (OC%), total 324
- nitrogen (TN%) carbon and nitrogen (C/N) molar ratios, δ^{13} C and δ^{15} N. 325

326 327

328 329

Table 1.

Month/Year	Landsat Data	Curuá-Una River Quote
Aug/1975	2	5.3
Oct/1985	5	3.7
June/1995	5	6
June/2008	5	No data

330

Discussion started: 17 May 2017

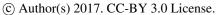


Table 2.

Depth (cm)	DBD (g cm ⁻³)	$\delta^{15}N$	δ ¹³ C	C (%)	N (%)	C/N
0-2	1.0	8.9	-29.2	3.8	0.3	17.2
2-4	0.9	11.7	-29.0	3.8	0.3	18.7
4-6	1.0	10.4	-28.8	4.0	0.3	19.2
6-8	1.1	9.3	-28.7	4.3	0.3	20.2
8-10	1.0	9.4	-28.7	4.1	0.3	19.8
10-12	1.1	7.9	-28.6	4.6	0.3	21.2
12-14	1.1	8.2	-28.7	4.3	0.3	19.9
14-16	1.1	7.8	-28.6	4.3	0.3	20.9
16-18	1.0	8.7	-28.5	4.4	0.3	21.2
18-20	1.1	7.5	-28.4	4.4	0.3	19.8
20-22	1.0	6.5	-28.2	5.4	0.3	21.2
22-24	1.0	6.0	-27.8	5.3	0.3	21.5
24-26	1.0	5.2	-27.4	7.3	0.4	25.4
26-28	1.1	6.1	-27.6	6.0	0.3	23.8
28-30	1.0	5.0	-27.3	6.0	0.4	22.7
30-32	1.0	5.4	-28.0	6.1	0.3	27.0
32-34	1.3	6.6	-28.5	4.4	0.2	27.5
34-36	1.6	8.9	-29.0	2.2	0.1	23.1
36-38	1.4	11.4	-29.4	2.9	0.1	30.4
38-40	1.4	10.4	-29.5	3.3	0.1	30.5
40-42	1.5	11.4	-29.3	2.4	0.1	23.8
42-44	1.6	12.2	-29.4	1.3	0.1	15.6
44-46	1.8	8.2	-29.6	1.2	0.1	14.3
46-48	1.5	8.8	-29.8	2.2	0.1	21.6
48-50	0.9	10.4	-29.7	2.9	0.2	25.6
50-52	0.9	10.2	-29.7	2.6	0.1	27.2
52-54	0.9	7.1	-29.7	3.9	0.2	28.6
54-56	0.9	9.2	-29.9	3.6	0.2	27.8
56-58	0.9	6.6	-30.1	4.3	0.2	30.1
58-60	0.9	5.0	-30.1	3.5	0.2	23.1
Average	1.11	8.34	-28.9	4.0	0.2	23.0
Stand Dev	0.24	2.1	0.8	1.9	0.1	4.2

Manuscript under review for journal Biogeosciences

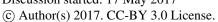
Discussion started: 17 May 2017

349	References
350 351	Aalto, R., L. Maurice-Bourgoin, T. Dunne, D. R. Montgomery, C. A. Nittrouer, and J. L.
352	Guyot. 2003. Episodic sediment accumulation on Amazonian flood plains
353	influenced by El Niño/Southern Oscillation. Nature 425 :493-497.
354	Abril, G., J. M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T.
355	Meziane, J. H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P.
356	Albéric, M. F. Landim De Souza, and F. Roland. 2014. Amazon River carbon
357	dioxide outgassing fuelled by wetlands. Nature 505 :395-398.
358	Amorim, A. T. d. S. 2000. Santarém: uma síntese histórica, Canoas, Ulbra, Santarem,
359	Brazil
360	Anderson, N. J., R. D. Dietz, and D. R. Engstrom. 2013. Land-use change, not climate,
361	controls organic carbon burial in lakes. Proceedings. Biological sciences / The
362	Royal Society 280 :20131278.
363	Appleby, P. G., and F. Oldfield. 1992. Application of lead-210 to sedimentation studies.
364	Pages 731-783 in M. Ivanovich and S. Harmon, editors. Uranium Series
365	Disequilibrium: Application to Earth, Marine and Environmental Science. Oxford
366	Science Publications.
367	Bakoariniaina, L. N., T. Kusky, and T. Raharimahefa. 2006. Disappearing Lake Alaotra:
368	Monitoring catastrophic erosion, waterway silting, and land degradation hazards
369	in Madagascar using Landsat imagery. Journal of African Earth Sciences 44:241-
370	252.
371	Cohen, A. S., M. R. Palacios-Fest, J. McGill, P. W. Swarzenski, D. Verschuren, R.
372	Sinyinza, T. Songori, B. Kakagozo, M. Syampila, C. M. O'Reilly, and S. R. Alin.
373	2005. Paleolimnological investigations of anthropogenic environmental change in

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

© Author(s) 2017. CC-BY 3.0 License.



374	Lake Tanganyika: I. An introduction to the project. Journal of Paleolimnology
375	34 :1-18.
376	Cruz, H., P. Sablayrolles, M. Kanashiro, and M. S. Amaral, P. 2011. Relação empresa/
377	comunidade no manejo florestal comunitário e familiar: Uma contribuição do
378	Projeto Floresta em pé.
379	Diaz, R. J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine
380	ecosystems. Science 321 :926-929.
381	Dietz, R. D., D. R. Engstrom, and N. J. Anderson. 2015. Patterns and drivers of change in
382	organic carbon burial across a diverse landscape: Insights from 116 Minnesota
383	lakes. Global Biogeochemical Cycles 29:708-727.
384	Dong, X., N. J. Anderson, X. Yang, X. chen, and J. Shen. 2012. Carbon burial by shallow
385	lakes on the Yangtze floodplain and its relevance to regional carbon sequestration.
386	Global Change Biology 18:2205-2217.
387	Downing, J. P., M. Meybeck, J. C. Orr, R. R. Twilley, and H. W. Scharpenseel. 1993.
388	Land and water interface zones. Water, Air, & Dollution 70:123-137.
389	Enea, A., G. Romanescu, and C. Stoleriu. 2012 Quantitative considerations concerning
390	the source-areas for the silting of the red lake (Romania) lacustrine basin.
391	Romania.
392	Fearnside, P. M. 2005. Do hydroelectric dams mitigate global warming? The case of
393	Brazil's Curuá-Una Dam. Mitigation and Adaptation Strategies for Global Change
394	10 :675-691.
395	Gordon, S. I. 1980. Utilizing LANDSAT imagery to monitor land-use change: A case
396	study in ohio. Remote Sensing of Environment 9:189-196.

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

397

391	Coulding, W. 1993. Prooded folests of the Amazon. Scientific American 200.114-
398	120+115.
399	Hoffmann, T., M. Schlummer, B. Notebaert, G. Verstraeten, and O. Korup. 2013. Carbon
400	burial in soil sediments from Holocene agricultural erosion, Central Europe.
401	Global Biogeochemical Cycles 27:828-835.
402	INPE. 2016. Program for the Estimation of Amazon Deforestation. Accessed 20
403	November 2016, http://www.obt.inpe.br/prodes/prodes_1988_2015n.htm .
404	Ivanovich, M., and S. Harmon. 1992. Uranium Series Disequilibrium - Applications to
405	Earth, Marine and Environmental Sciences. second edition edition. Oxford
406	Science Publications.
407	Junk, W. J. 2013. Current state of knowledge regarding South America wetlands and
408	their future under global climate change. Aquatic Sciences 75 :113-131.
409	Ketterer, M. E., K. M. Hafer, V. J. Jones, and P. G. Appleby. 2004. Rapid dating of
410	recent sediments in Loch Ness: Inductively coupled plasma mass spectrometric
411	measurements of global fallout plutonium. Science of the Total Environment
412	322 :221-229.
413	LigockI, L. P. 2003. Comportamento geotécnico da barragem de Curuá-Una, Pará. Rio de
414	Janeiro.
415	Lucas, C. M., J. Schöngart, P. Sheikh, F. Wittmann, M. T. F. Piedade, and D. G.
416	McGrath. 2014. Effects of land-use and hydroperiod on aboveground biomass and
417	productivity of secondary Amazonian floodplain forests. Forest Ecology and
418	Management 319 :116-127.

Goulding, M. 1993. Flooded forests of the Amazon. Scientific American 268:114-

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

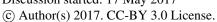
© Author(s) 2017. CC-BY 3.0 License.

419	Marotta, H., L. Bento, F. A. De Esteves, and A. Enrich-Prast. 2009. Whole ecosystem
420	evidence of eutrophication enhancement by wetland dredging in a shallow
421	Tropical Lake. Estuaries and Coasts 32:654-660.
422	Marotta, H., C. M. Duarte, F. Meirelles-Pereira, L. Bento, F. A. Esteves, and A. Enrich-
423	Prast. 2010. Long-term CO2 variability in two shallow tropical lakes experiencing
424	episodic eutrophication and acidification events. Ecosystems 13:382-392.
425	Marotta, H., L. Pinho, C. Gudasz, D. Bastviken, L. J. Tranvik, and A. Enrich-Prast. 2014.
426	Greenhouse gas production in low-latitude lake sediments responds strongly to
427	warming. Nature Climate Change 4 :467-470.
428	Melack, J. M., L. L. Hess, M. Gastil, B. R. Forsberg, S. K. Hamilton, I. B. T. Lima, and
429	E. M. L. M. Novo. 2004. Regionalization of methane emissions in the Amazon
430	Basin with microwave remote sensing. Global Change Biology 10:530-544.
431	Moreira-Turcq, P., J. M. Jouanneau, B. Turcq, P. Seyler, O. Weber, and J. L. Guyot.
432	2004. Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the
433	low Amazon region: Insights into sedimentation rates. Palaeogeography,
434	Palaeoclimatology, Palaeoecology 214:27-40.
435	Munyati, C. 2000. Wetland change detection on the Kafue Flats, Zambia, by
436	classification of a multitemporal remote sensing image dataset. International
437	Journal of Remote Sensing 21:1787-1806.
438	Neill, C., M. T. Coe, S. H. Riskin, A. V. Krusche, H. Elsenbeer, M. N. Macedo, R.
439	McHorney, P. Lefebvre, E. A. Davidson, R. Scheffler, A. M. e Silva Figueira, S.

Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

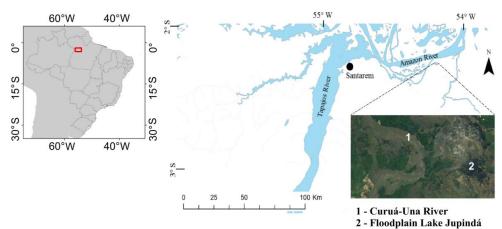
© Author(s) 2017. CC-BY 3.0 License.



441	cropland expansion and intensification. Philosophical Transactions of the Royal
442	Society B: Biological Sciences 368.
443	Neill, C., M. T. Coe, S. H. Riskin, A. V. Krusche, H. Elsenbeer, M. N. Macedo, R.
444	McHorney, P. Lefebvre, E. A. Davidson, R. Scheffler, A. M. Figueira, S. Porder,
445	and L. A. Deegan. 2013b. Watershed responses to Amazon soya bean cropland
446	expansion and intensification. Philosophical transactions of the Royal Society of
447	London. Series B, Biological sciences 368:20120425.
448	Neue, H. U., J. L. Gaunt, Z. P. Wang, P. Becker-Heidmann, and C. Quijano. 1997.
449	Carbon in tropical wetlands. Geoderma 79 :163-185.
450	Ometto, J. P. H. B., J. R. Ehleringer, T. F. Domingues, J. A. Berry, F. Y. Ishida, E.
451	Mazzi, N. Higuchi, L. B. Flanagan, G. B. Nardoto, and L. A. Martinelli. 2006.
452	The stable carbon and nitrogen isotopic composition of vegetation in tropical
453	forests of the Amazon Basin, Brazil. Biogeochemistry 79:251-274.
454	Peixoto, R. B., H. Marotta, D. Bastviken, and A. Enrich-Prast. 2016. Floating Aquatic
455	Macrophytes Can Substantially Offset Open Water CO <inf>2</inf> Emissions
456	from Tropical Floodplain Lake Ecosystems. Ecosystems 19:724-736.
457	Sanders, C. J., B. D. Eyre, I. R. Santos, W. MacHado, W. Luiz-Silva, J. M. Smoak, J. L.
458	Breithaupt, M. E. Ketterer, L. Sanders, H. Marotta, and E. Silva-Filho. 2014.
459	Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a
460	highly impacted mangrove wetland. Geophysical Research Letters 41:2475-2480.
461	Sanders, L. M., K. H. Taffs, D. J. Stokes, C. J. Sanders, J. M. Smoak, A. Enrich-Prast, P.
462	Macklin, I. R. Santos, and H. Marotta. 2017. Carbon accumulation in Amazonian

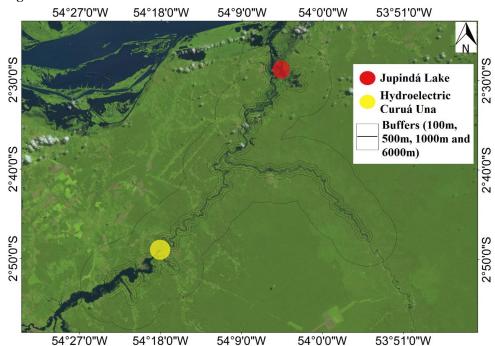
Biogeosciences Discuss., doi:10.5194/bg-2017-151, 2017 Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

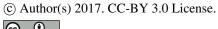

463	floodplain lakes: A significant component of Amazon budgets? Limnology &
464	Oceanography Letters:29-35.
465	Skole, D., and C. Tucker. 1993. Tropical deforestation and habitat fragmentation in the
466	amazon: Satellite data from 1978 to 1988. Science 260:1905-1910.
467	Smith, L. K., J. M. Melack, and D. E. Hammond. 2002. Carbon, nitrogen, and
468	phosphorus content and 210Pb-derived burial rates in sediments of an Amazon
469	floodplain lake. Amazoniana 17:413-436.
470	Stanley, E. H., S. M. Powers, N. R. Lottig, I. Buffam, and J. T. Crawford. 2012.
471	Contemporary changes in dissolved organic carbon (DOC) in human-dominated
472	rivers: Is there a role for DOC management? Freshwater Biology 57:26-42.
473	Zocatelli, R., P. Moreira-Turcq, M. Bernardes, B. Turcq, R. C. Cordeiro, S. Gogo, J. R.
474	Disnar, and M. Boussafir. 2013. Sedimentary evidence of soil organic matter
475	input to the curuai amazonian floodplain. Organic Geochemistry 63:40-47.
476	
477	
478	
479	
480	
481	
482	
483	
484	
485	
486	

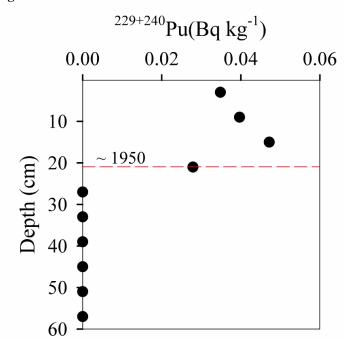
Discussion started: 17 May 2017 © Author(s) 2017. CC-BY 3.0 License.

Figure 1.


Biogeosciences Discuss., doi:10.5194/bg-2017-151, 2017 Manuscript under review for journal Biogeosciences Discussion started: 17 May 2017

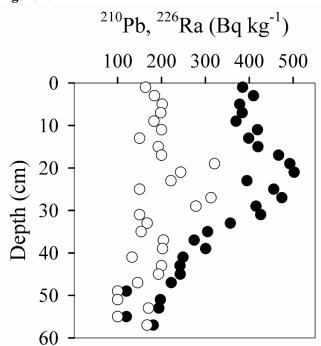
© Author(s) 2017. CC-BY 3.0 License.





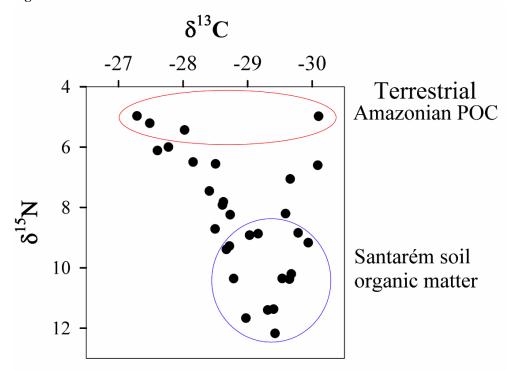
Discussion started: 17 May 2017

Figure 3.


Biogeosciences Discuss., doi:10.5194/bg-2017-151, 2017 Manuscript under review for journal Biogeosciences Discussion started: 17 May 2017

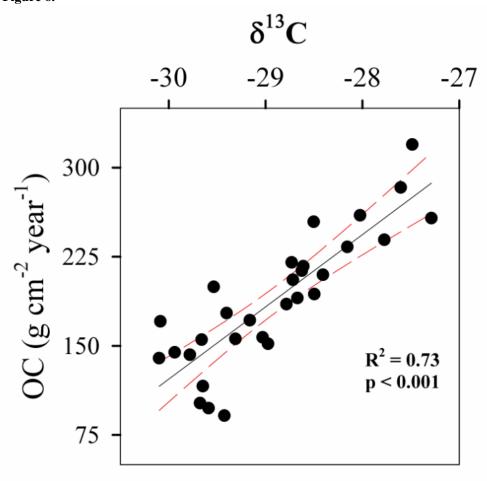
© Author(s) 2017. CC-BY 3.0 License.

Figure 4.



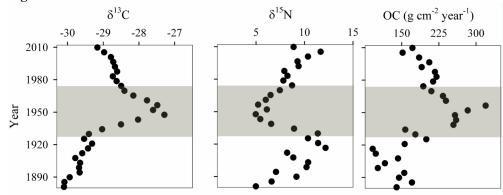
© Author(s) 2017. CC-BY 3.0 License.

Figure 5.

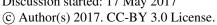


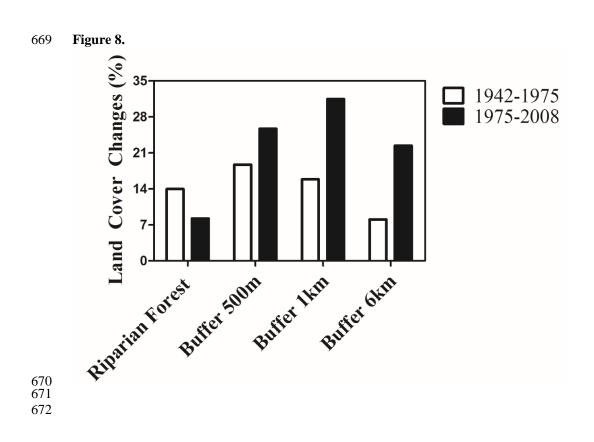
© Author(s) 2017. CC-BY 3.0 License.

Figure 6.


Biogeosciences Discuss., doi:10.5194/bg-2017-151, 2017 Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017 © Author(s) 2017. CC-BY 3.0 License.




Biogeosciences Discuss., doi:10.5194/bg-2017-151, 2017 Manuscript under review for journal Biogeosciences

Discussion started: 17 May 2017

